quarta-feira, 4 de maio de 2011

Entenda os Padrão das Redes Wireless (parte 2)

Olá a todos.  Continuando o artigo sobre os Padrões das Redes Wireless, falaremos hoje sobre o padrão N, suas inovações e especificações. No final do post, publicarei também uma dica de configuração de rede com AP's Padrão G e N. Boa Leitura.

802.11n

Com o 802.11g, os fabricantes chegaram muito próximos do que é fisicamente possível transmitir usando um único transmissor e uma faixa de freqüência de apenas 22 MHz (equivalente a um único canal)

Em 2004 o IEEE formou uma força tarefa destinada a desenvolver um novo padrão 802.11, com o objetivo de oferecer velocidades reais de transmissão superiores às das redes cabeadas de 100 megabits, além de melhorias com relação à latência, ao alcance e à confiabilidade de transmissão. Considerando que uma rede 802.11g transmite pouco mais de 27 megabits de dados reais (descontando todo o overhead do sistema de transmissão), a meta de chegar aos 100 megabits parecia bastante ambiciosa.

A solução para o problema foi combinar melhorias nos algoritmos de transmissão e do uso do MIMO (multiple-input multiple-output). O MIMO permite que a placa utilize diversos fluxos de transmissão, utilizando vários conjuntos transmissores, receptores e antenas, transmitindo os dados de forma paralela.

Existe a possibilidade de criar pontos de acesso e placas 802.11n com dois emissores e dois receptores (2x2), dois emissores e três receptores (2x3), três emissores e três receptores (3x3) ou quatro emissores e quatro receptores (4x4). Os pontos de acesso 2x2 podem utilizar apenas duas antenas, os 2x3 ou 3x3 precisam de três antenas, enquanto os 4x4 precisam de 4 antenas:
Ponto de acesso da Asus com três antenas
 Inicialmente, o mais comum era o uso das configurações 2x3 e 3x3, com o uso de três antenas. Entretanto, conforme os preços foram caindo e os fabricantes se viram obrigados a cortar custos, os pontos de acesso 2x2 (com apenas duas antenas) passaram a ser mais comuns. Da mesma forma, produtos high-end, com 4 antenas (4x4) podem vir a se popularizar no futuro, conforme o custo dos componentes for caindo.

Somando todas as melhorias, foi possível aumentar tanto a velocidade de transmissão quanto o alcance. A velocidade nominal subiu de 54 para 300 megabits (600 megabits nos APs 4x4, capazes de transmitir 4 fluxos simultâneos) e o uso de múltiplos fluxos de transmissão torna o alcance do sinal quase duas vezes maior.

Para atingir taxas de transmissão tão altas, o 802.11n combina uma série de melhorias. A primeira é a redução do guard interval (o intervalo entre as transmissões) de 800 ns para 400 ns, o que resulta em um ganho de cerca de 11% na taxa de transmissão. A ele se soma o aumento no número de subcarriers para a transmissão de dados de 48 para 52.

D-Link DIR-615, exemplo de WAP 802.11n de 2x2 de baixo custo, com duas antenas




Os subcarriers são faixas de transmissão com 312.5 kHz cada, que combinadas resultam na banda total usada pela rede. Nas redes 802.11g, 4 dos 52 subcarriers são usados para transmitir informações sobre a modulação do sinal, deixando apenas 48 para a transmissão dos dados. No 802.11n foi possível realocar estes 4 subcarriers para a transmissão de dados, resultando em um ganho proporcional na taxa de transmissão.

Somando os dois com uma melhoria no algoritmo de transmissão de erros, foi possível chegar a uma taxa de transmissão de 72.2 megabits por transmissor (usando um único canal).
Se as melhorias parassem por aí, o 802.11n ofereceria um ganho de apenas 33% sobre o 802.11g, o que ofereceria poucos ganhos na prática. Daí em diante, os ganhos se baseiam no uso de "força bruta", combinando o uso de vários rádios e de dois canais simultâneos. É aí que entra o MIMO.

Graças ao uso do MIMO, os pontos de acesso 802.11n podem utilizar dois ou quatro fluxos simultâneos, o que dobra ou quadruplica a taxa de transmissão, atingindo respectivamente 144.4 e 288.8 megabits.

A princípio, o uso de diversos transmissores, transmitindo simultaneamente na mesma faixa de freqüência parece contra produtivo, já que geraria interferência (como ao ter várias redes operando no mesmo espaço físico), fazendo com que os sinais se cancelassem mutuamente. O MIMO trouxe uma resposta criativa para o problema, tirando proveito da reflexão do sinal.

A idéia é que, por serem transmitidos por antenas diferentes, os sinais fazem percursos diferentes até o receptor, ricocheteando em paredes e outros obstáculos, o que faz com que não cheguem exatamente ao mesmo tempo. O ponto de acesso e o cliente utilizam um conjunto de algoritmos sofisticados para calcular a reflexão do sinal e, assim, tirar proveito do que originalmente era um obstáculo.

Este recurso é chamado de Spatial Multiplexing. Você pode imaginar que o sistema funciona de forma similar ao que teríamos utilizando três (ou quatro) antenas direcionais apontadas diretamente para o mesmo número de antenas instaladas no cliente. A "mágica" do MIMO é permitir que um resultado similar seja obtido mesmo utilizando antenas ominidirecionais, que irradiam o sinal em todas as direções.
Naturalmente, o sistema torna necessário o uso de uma boa dose de poder de processamento, o que demanda o uso de controladores mais complexos nos dispositivos, o que além de aumentar o custo, também aumenta o consumo elétrico (um problema no caso dos portáteis).

Pontos de acesso capazes de transmitir 4 fluxos simultâneos são muito raros, já que eles precisam de 4 emissores, 4 receptores e 4 antenas, além de um processador de sinais extremamente poderoso para lidar com o grande volume de possibilidades de reflexão. A complexidade do trabalho cresce exponencialmente conforme aumenta o número de fluxos simultâneos, de forma que usar 4 fluxos demanda 4 vezes mais processamento do que apenas dois.

Para conseguir atingir 288.8 megabits utilizando apenas dois fluxos, é utilizado o sistema HT40, onde são utilizados dois canais simultaneamente (assim como no Super G da Atheros), ocupando uma faixa de freqüência de 40 MHz. Somando tudo isso a um pequeno arredondamento, chegamos aos 300 megabits divulgados pelos fabricantes. Um ponto de acesso que combine o uso do HT40 com 4 rádios dobraria a taxa teórica, chegando a 600 megabits.

Devido a normas regulatórias, o uso de uma faixa de 40 MHz não é permitida em muitos países, como no caso da França, onde é permitido apenas o uso dos canais 10, 11, 12 e 13 (o que resulta em uma faixa de freqüência de apenas 20 MHz) por isso existe a opção de usar o sistema HT20, onde o ponto de acesso se limita a usar uma faixa mais estreita, de apenas 20 MHz. A opção fica disponível dentro das configurações do ponto de acesso, como neste screenshot da configuração de um AP Belkin N1.


Se você está atualizando sua rede, uma boa opção pode ser manter o ponto de acesso 802.11g atual e apenas adicionar o 802.11n, ficando com dois APs. Nesse caso, configure os dois pontos de acesso com SSIDs diferentes (de forma que o cliente possa realmente escolher qual utilizar na hora de de conectar à rede), com ambos ligados diretamente ao switch da rede. Mantenha-os a uma certa distância (se possível em cômodos diferentes) para minimizar a interação entre eles (e, consequentemente, a perda de desempenho em ambas as redes) e não se esqueça de usar canais diferentes na configuração de ambos.


Se possível, configure o ponto de acesso 802.11n para utilizar a faixa dos 5 GHz, já que além de mais limpa, ela não interfere com os 2.4 GHz usados pelo AP 802.11g. Caso isso não seja possível (se o AP ou alguns dos clientes 802.11n forem limitados à faixa dos 2.4 GHz) então prefira utilizar o modo HT20, que apesar de oferecer uma taxa de transferência mais baixa, interferirá menos com o AP 802.11g.


Caso você esteja utilizando pontos de acesso com funções de roteador, não se esqueça de desativar o servidor DHCP de um deles, caso contrário eles passarão a oferecer os mesmos endereços aos clientes, criando conflitos.


Com essa configuração, você terá essencialmente duas redes distintas, permitindo que os clientes 802.11n e 802.11g disponham de toda a velocidade de suas respectivas redes, sem perdas. Os dois APs podem então conviver até que o último cliente 802.11g seja substituído.

 Fonte: Hardware.com

0 comentários:

Postar um comentário

Twitter Delicious Facebook Digg Stumbleupon Favorites More